Metropolis 2: a unified approach to airspace design and separation management for U-space

R&D case

R&D case: Unified approach airspace design and separation management U-space (Metropolis 2)

Urban Air Mobility (UAM) concepts, such as flying taxis and package delivery drones, are increasingly viewed as an essential component of future transportation systems. But before UAM flights can occur on a meaningful scale, several challenges need to be tackled including airspace integration. Recognising the need to address this challenge, several initiatives are underway worldwide to develop the new Unmanned Traffic Management (UTM) services needed to facilitate UAM flights. In this context, the European Commission has initiated the European U-space UTM system. U-space development has been divided into four distinct phases named U1-U4 where the complexity of the resulting operations are gradually increased.

The challenge

The goal of the Metropolis 2 project was to investigate the separation management architecture that is needed to achieve high density UAM and drone operations in urban areas for a future U-space U3/U4 system. The aim was to develop an architecture that took into account interactions between the following aspects: airspace design, flight planning, strategisch deconfliction and tactical deconfliction between drones in U-space airspace.

The solution

Three different architectures for separation management were tested, a) centralised ground-based, b) decentralised air-based and c) hybrid. The concepts were tested using fast-time simulations for a large number of different traffic volumes for the city of Vienna. This included densities of up to 5000 drones over Vienna over a period of one hour. The simulations were performed using the BlueSky fast-time simulator.

What did we do?

NLR led the project subteam that developed and simulated the Hybrid concept. The results of the simulations indicated that the Hybrid architecture resulted in the highest safety and capacity. It is recommended that U-space implementations for urban areas adopt such a hybrid architecture that containts both ground-based centralised control for flight planning and airbased tactical control for

dealing with conflicts as a result of uncertainties such as wind. The airspace design needs to compatible with the actions of the preceeding safety layers. The results have been published in the SESAR Innovation Days conference in Budapest in December 2022.

NLR Marknesse

Information

Latest cases

Construction and Manufacturing

20 March 2025

R&D case: Enabling temperature control for large scale additive manufacturing

The challenge One of the main challenges of Large Scale 3D printing of high temperature thermoplastics is the control of the interface temperature – which determines the degree of bonding between consecutive layers. When the deposited material has cooled down in excess, poor adhesion is achieved between layers, leading to insufficient strength, delamination, cracking and […]
Sustainability and Environment

28 January 2025

R&D case COCOLIH2T - Composite Conformal Liquid H2 Tank

The global aviation industry is committed to reducing global net aviation carbon emissions by 50% by the year 2050, with the European Commission pursuing a more ambitious goal of a 75% reduction in CO2 emissions per passenger kilometre. Alternative fuels such as liquid hydrogen (LH2) are seen as playing a central role in a zero-emission […]
GERDA robot for Smart maintenance inspections and smart training
Maintenance and Repair

18 December 2024

R&D case: Smart maintenance inspections and smart training devices

Maintenance is important to make aircraft operations a success. Unfortunately, the MRO industry is faced with a shortage of labour and pollution. How can we use innovations to help the industry? The challenge Aircraft maintenance organisations perform high-tech maintenance on aircraft. The maintenance activities are labour intensive and require considerable resources. In this research, we […]