NLR micro-pump: from idea to product

R&D case

R&D case: Cubesat thermal modelling

CubeSat thermal modelling – Applying ESATAN-TMS for the cubesat industry

The challenge

With the increase in power density, thermal control measures are needed for CubeSats. This requires low-cost hardware and software solutions, which are currently hardly available. Miniaturisation and application of thermal control systems is being worked on, however evaluating design iterations is hindered by the lack of thermal analysis imposing large uncertainties in the thermal design of CubeSats. ISIS – Innovative Solutions in Space and Royal NLR have worked together on an innovative modular approach for CubeSat thermal analyses in ESATAN-TMS. Key of this approach is the interchangeability and scalability of validated thermal submodels allowing for fast and more accurate analysis for LEO missions.

The solution

NLR’s expertise with ESATAN-TMS is applied in this project to set up a modular approach of thermal modelling of CubeSats. Thermally relevant submodels are built for commercially available subblocks, like the ISIS TXS-module, and general building blocks of a CubeSat frame. This is built in such a way, that it can be easily adapted and assembled into an entire CubeSat system. The correct modelling of interfaces between sub-models is herein critical for the thermal maturity of the model. Hence a lot of attention is given to this minor detail in the assembly. In the next stage of the project, the thermal submodules were correlated with the results of thermal vacuum tests. This correlation will ultimately result in a verified thermal model of the submodules.

What did we do?

A library of validated thermal sub-models will be created in ESATAN-TMS, allowing for fast and accurate orbital analysis, which results in improved thermal designs of CubeSats. CubeSat manufacturers and integrators can use the thermally verified submodels in ESATAN-TMS and decrease their development time of the design of a CubeSat by implementing the thermal modelling in an early stage of the design cycle. The complete panel is cured on a female mould in an autoclave at a higher temperature and pressure.

To support the stiffeners during this process no labour intensive tools were used. Instead of the common used high number of supporting blocks a silicon bag is developed. The silicon bag has the same pattern as the final panel with stiffeners. In this way, an affordable panel was made with integrated stiffeners. No man-hours are required for cleaning of tool blocks, bonding of stiffeners or the installation of fasteners to connect stiffeners

NLR Marknesse

Information

Latest cases

Construction and Manufacturing

20 March 2025

R&D case: Enabling temperature control for large scale additive manufacturing

The challenge One of the main challenges of Large Scale 3D printing of high temperature thermoplastics is the control of the interface temperature – which determines the degree of bonding between consecutive layers. When the deposited material has cooled down in excess, poor adhesion is achieved between layers, leading to insufficient strength, delamination, cracking and […]
Sustainability and Environment

28 January 2025

R&D case COCOLIH2T - Composite Conformal Liquid H2 Tank

The global aviation industry is committed to reducing global net aviation carbon emissions by 50% by the year 2050, with the European Commission pursuing a more ambitious goal of a 75% reduction in CO2 emissions per passenger kilometre. Alternative fuels such as liquid hydrogen (LH2) are seen as playing a central role in a zero-emission […]
GERDA robot for Smart maintenance inspections and smart training
Maintenance and Repair

18 December 2024

R&D case: Smart maintenance inspections and smart training devices

Maintenance is important to make aircraft operations a success. Unfortunately, the MRO industry is faced with a shortage of labour and pollution. How can we use innovations to help the industry? The challenge Aircraft maintenance organisations perform high-tech maintenance on aircraft. The maintenance activities are labour intensive and require considerable resources. In this research, we […]