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Following a discussion of recent reviews, we argue that in resilience engineering (RE) there is a need for
more structured modelling approaches for analysis of resilience in sociotechnical systems that can sup-
port both qualitative and quantitative studies. In this paper we present agent-based modelling and sim-
ulation (ABMS) as an approach towards this end. An agent-based model of a sociotechnical system
describes the performance and interactions of its constituent human operators and technical systems
in an operational context. In support of RE it can effectively be used to analyse the capability of a
sociotechnical system to deal with disturbances and performance variability. We present an RE cycle,
which uses qualitative and quantitative ABMS phases for analysis of the adaptive capacity of a sociotech-
nical system. The focus in this paper is on the qualitative ABMS phase, including the development of a
qualitative model and mental simulation using the qualitative model. The model development is sup-
ported by a set of model constructs, which represent key aspects of evolution of agents’ states and agents’
interactions. The mental simulations use reasoning on the basis of the qualitative model to structurally
analyse the interactions and dynamics of the performance in the agent-based model. Results of the qual-
itative ABMS phase can be used to improve the resilience of operations or they may be followed by quan-
titative ABMS. The approach is presented in detail for aircraft runway approach operations using
conventional systems and an advanced aircraft surveillance application system.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Resilience engineering

Following the origins of the resilience perspective in ecological
studies on prey-predator populations (Holling, 1973), the resili-
ence concept has been adopted in a large number of domains. Var-
ious review studies (Francis, 2013; Francis and Bekera, 2014;
Hosseini et al., 2016; Martin-Breen and Anderies, 2011) discuss
resilience in domains such as ecosystems, socio-ecological sys-
tems, socio-economic systems, institutions and governance, social
innovation, climate, economy, individual trauma response, psy-
chology, psychiatry, infrastructure, safety management, and orga-
nizational science. The resilience concept was introduced in the
safety science domain by Hollnagel et al. (2006). For this they
coined the term resilience engineering (RE), indicating the ability
of a sociotechnical system to adjust its functioning to sustain
required operations notwithstanding changes and disturbances,
and the ‘engineering’ of the sociotechnical system to achieve such
ability. RE stresses the key role of performance variability by
human operators to adjust for changing demands and conditions
in the working context. Safety management that uses an RE per-
spective leads to what Hollnagel (2014) calls Safety-II, entailing a
focus that includes everyday actions and outcomes, which can be
contrasted with a Safety-I focus on accidents and incidents only.
Bergström et al. (2015) studied a selection of 86 peer-reviewed
safety-oriented resilience papers along three questions: why do
we need resilience, what is resilience, and who realises resilience?
It was found that the need for resilience is typically addressed by
referring to the complexity of modern sociotechnical systems and
their inherent risks. The object of resilience is the capacity to adapt,
so as to keep the complex and inherently risky system within its
functional limits. The subject of resilience typically is the individ-
ual, either at the sharp end or at higher managerial levels.

In a recent RE perspective paper, Woods (2015) discusses four
concepts of resilience:

(1) Resilience as rebound, expressing how a system rebounds
from disrupting or traumatic events and returns to previous
or normal activities.
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(2) Resilience as robustness, expressing the ability of a system
to absorb perturbations.

(3) Resilience as graceful extensibility, expressing how a system
extends performance when surprise events challenge its
boundaries.

(4) Resilience as sustained adaptability, expressing the ability of
a system to adapt to future surprises as conditions continue
to evolve.

Woods argues that the rebound concept as such provides lim-
ited added value, since it needs to be understood what produces
a better rebound. For this it needs to be known first what capacities
are present before a surprise event arises and how such a surprise
event challenges the base capabilities of the system. Woods argues
that this implies a shift in focus from the rebound concept to the
graceful extensibility and sustained adaptability concepts. With
respect to the robustness concept, Woods refers to robust control
engineering and indicates that robustness considers a particular
system property that is able to withstand a particular perturbation
in some sense. As argued above, system brittleness arises when the
set of disturbances is not in the system’s base capabilities, setting a
need for resilience as graceful extensibility and sustained adapt-
ability. In addition, Woods argues that systems that become more
optimal in responding to some disturbances tend to become more
brittle to other disturbances, addressing the need for system archi-
tectures that can sustain the ability to future surprises. In support
of graceful extensibility, indicators of system decompensation
should be tracked and anticipation of bottlenecks ahead should
be stimulated. Sustained adaptability is supported by understand-
ing the effects of changes in a system’s life cycle and providing suf-
ficient flexibility to continue to adapt over such longer time scales.
In conclusion, a main principle is that a resilient system should be
able to well handle surprise events that are outside its design base.
How such ability can be achieved is still largely a research subject
and new methods are needed for analysis and engineering towards
such resilience.

1.2. Modelling for resilience engineering

As ways to assess resilience in various domains, qualitative and
quantitative approaches can be distinguished, following a review
in (Hosseini et al., 2016). The qualitative approaches include con-
ceptual frameworks and semi-quantitative indices. The conceptual
frameworks provide guidelines and best practices for studying
resilience in various domains. The semi-quantitative indices are
based on expert assessments of different qualitative aspects of
resilience, for instance by structured sets of questions that are
scored on a Likert scale. The quantitative approaches include gen-
eral measures for resilience quantification and domain-specific
structural-based modelling approaches. As general measures, a
broad range of deterministic and stochastic measures are pre-
sented in Hosseini et al. (2016), which all somehow describe the
decline and recovery of system performance following a distur-
bance. The structural-based models include optimization models,
simulation models and fuzzy logic models, which mostly describe
the vulnerability and recovery for disturbances in networks (e.g.
transportation, power transmission, communication) and supply
chains. Such models tend to describe system performance at rela-
tively high and aggregated system levels, such as network nodes
and average consumption, rather than at the level of interacting
humans and technical systems in a sociotechnical system. As such
they remain at a distance from RE needs.

In RE, typically qualitative approaches are used to assess resili-
ence, and to improve resilience on the basis of such understanding.
The results of such studies include guidelines for performing resi-
lience research, qualitative insights into safety occurrences, or
qualitative recommendations for design. Typically these studies
discuss sociotechnical systems in detail, including interacting
humans and technical systems. A well-known qualitative approach
is the Functional Resonance Analysis Method (FRAM) developed by
Hollnagel (2012). It uses a functional analysis-based approach,
wherein functions (e.g. activities, tasks) in an operation are
described by six aspects, performance variability of functions is
identified, relations between functions and propagation of perfor-
mance variability that may lead to functional resonance is anal-
ysed, and these analysis results are linked to the consequences
for the operation. FRAM has been applied for retrospective analysis
of incidents and accidents (Herrera and Woltjer, 2010; Paulo Victor
Rodrigues, 2011) as well as for prospective analysis in system
design (Macchi et al., 2011; Praetorius et al., 2015). It is recognized
in Praetorius et al. (2015) that notwithstanding the potential of
FRAM to uncover operational complexity given particular events,
it is difficult to analyse and model everyday operations that do
not include such events, and it may be hard to convey field data
into functional models. Also other RE studies often use incidents,
accidents or some kinds of non-nominal events as basis for their
analysis. Thus, it is often still hard to use RE approaches produc-
tively for understanding everyday actions and outcomes, such as
advocated in the Safety-II perspective of Hollnagel (2014).

We argue that there is a need in RE for more structured mod-
elling approaches for analysis of resilience in sociotechnical sys-
tems that can support qualitative as well as quantitative studies.
Support of qualitative studies is needed to align with customary
approaches for studying sociotechnical systems and with the
vocabulary of their practitioners, such that multidisciplinary con-
tributions to the analysis can be achieved. Furthermore, there are
cases in which a qualitative study provides sufficient results and
no further detailing towards quantification is needed. Prime rea-
sons for structured modelling and quantification in RE are to better
understand complex sociotechnical systems’ behaviour, and to
develop more specific design requirements. Relations, events and
dynamics of sociotechnical systems can be manifold and they can
be hard to analyse and understand without structured means.
Modelling and simulation provide such structured means for
attaining deepened understanding of sociotechnical systems.
Given the key contributions of human behaviour and performance
variability for resilience (Hollnagel et al., 2006), it is essential that
human roles and performance variability are well represented in
such modelling and simulation.

1.3. Agent-based modelling and simulation

In this paper we present agent-based modelling and simulation
(ABMS) as a structured approach for RE of sociotechnical systems.
ABMS is an approach for modelling complex systems by describing
the behaviour and interactions of a collection of autonomous
decision-making entities, called agents (Bonabeau, 2002; Macal
and North, 2010; Van Dam et al., 2013). The overall system beha-
viour emerges as a result of the individual agent processes and
their interactions. ABMS provides a highly modular and transpar-
ent way of structuring a model, thus supporting systematic analy-
sis, both conceptually and computationally. ABMS has been used in
a wide range of application fields, including molecular physics, cell
biology, ecology, epidemiology, social sciences, economy, market
analysis, archaeology, anthropology, and transport and traffic
(Chen and Cheng, 2010; Macal and North, 2010). In safety studies,
ABMS has been used for accident risk assessments (Blom and
Bakker, 2012; Everdij et al., 2014; Stroeve et al., 2013a).

An agent-based model of a sociotechnical system describes the
performance and interactions of its constituent human operators
and technical systems working in an operational context. In study-
ing resilience of a sociotechnical system it is key to understand the
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system’s capability to deal with disturbances and performance
variability. Such disturbances and performance variability may
reflect a wide range of events, conditions or circumstances, and
they may be internal to the sociotechnical system, i.e. stem from
particular human operators or technical systems, or they may be
external, i.e. reflect phenomena in the environment of the
sociotechnical system. Human operators and technical systems
can express a large variety of behavioural patterns, which are influ-
enced by processes and characteristics of the agent considered (e.g.
cognitive and affective aspects), and which depend on interactions
between the agents. ABMS offers the possibility to combine a large
variety of models for expressing the behaviour and performance
variability of the interacting agents in a sociotechnical system.
Simulations for ranges of varying conditions can help to unravel
the complexity of the sociotechnical system, and to find ways to
effectively support its adaptive capacity. As such ABMS is a very
promising technique in support of RE.

1.4. Agent-based modelling and mental simulation

We present ABMS as part of a generic cycle for RE, wherein we
distinguish two ABMS phases: qualitative ABMS and quantitative
ABMS. Qualitative ABMS includes the development of a qualitative
agent-based model and it uses this model for reasoning on rela-
tions and dynamics of agents’ states; this use of the model we call
‘‘mental simulation”. Quantitative ABMS includes development of
a formal model, software implementation and computer simula-
tion; this is the customary type of simulation in ABMS research.
In this paper we focus on the principles of ABMS for RE and on
the qualitative modelling phase, including mental simulation for
evaluation of the model.

Mental simulation is a well-known concept in neuroscience and
psychology, which describes the act of imagination and the gener-
ation of alternative realities, and which is used for explaining a
broad variety of phenomena such as affect, motivation, behaviour
and motor control (Markman et al., 2012). This process of self-
projection into alternate temporal, spatial, social, or hypothetical
realities is considered a distinctively human capacity, which pro-
vides meaning in life (Waytz et al., 2015) and which allows
humans to participate in a complex sociocultural world
(Baumeister and Masicampo, 2010). Mental simulations are also
used in engineering and science as ways to reason about interact-
ing and evolving processes, e.g. for mechanical systems (Hegarty,
2004), or for generating new scientific hypotheses and theories
(Clement, 2008; Nersessian, 1999). In particular, mental simulation
is the cognitive process for building and interpreting thought
experiments (Nersessian, 1992), which are described as ‘‘. . . the
construction of a dynamical model in the mind by the scientist
who imagines a sequence of events and processes and infers out-
comes. She then constructs a narrative to describe the setting
and sequence in order to communicate the experiment to
others. . .”. Such a narrative basically is a linguistic description of
the spatial, temporal and causal relationships among events and
entities, but it can be enhanced by supporting material, such as
diagrams, pictures and maps. Nersessian (1992) discusses experi-
mental evidence which indicates that such model-based reasoning
is faster than reasoning with (logical) propositions, as well as evi-
dence that a reader of a narrative spontaneously constructs mental
models to represent and reason about the situations depicted by
the narrative. In later work (Chandrasekharan et al., 2013), thought
experiments are considered to be on a spectrum of simulative
model-based reasoning, together with physical models and com-
putational models. Herein it is argued that computational models
can provide deeper insights than thought experiments, since they
better support examining a wide range of possibilities within the
model parameter space. An agent-based model provides a detailed
and structured representation of a sociotechnical system, which
ultimately is on the computational side of the spectrum for simu-
lative model-based reasoning. During the development of an
agent-based model, it is customary to use mental simulations to
arrive at narratives on the ways that agents perform and interact,
and to reason whether all essential entities and types of perfor-
mance are represented in the model for the research question
posed.
1.5. Objective and structure of the paper

It is the objective of this paper to show that agent-based mod-
elling and simulation is a suitable modelling approach for resili-
ence engineering, and that mental simulation on the basis of a
qualitative agent-based model effectively supports attaining
insights in the dynamic relations and performance of a sociotech-
nical system. The approach is illustrated in detail by an air traffic
application case for aircraft approach operations towards a runway
using conventional systems and an advanced aircraft surveillance
application system (ASAS).

Section 2 presents the ABMS-supported RE cycle and it
describes the methods for the development of a qualitative
agent-based model and for the mental simulations using this
model. Section 3 introduces the RE study of the air traffic applica-
tion case. Section 4 describes the development of a qualitative
agent-based model for these air traffic operations, which addresses
the performance of interacting human and technical system
agents. Section 5 describes the results attained by mental simula-
tion of the qualitative agent-based model for agents’ interactions
and evolution of agents’ states, and implications of these results.
Section 6 provides a discussion of the ABMS approach for RE.
2. ABMS approach for resilience engineering

2.1. ABMS-supported resilience engineering cycle

In this paper, ABMS is part of an RE approach (Pinska-Chauvin
et al., 2016), which includes the following main steps (Fig. 1):

Step 0. Scope RE study: to determine the objectives and scope of
the RE study;
Step 1. Describe operations: to describe the sociotechnical sys-
tem and its operations in nominal conditions;
Step 2. Identify varying conditions: to identify all kinds of distur-
bances and performance variability that can influence opera-
tions by the sociotechnical system;
Step 3. Analyse adaptive capacity: to identify and understand the
strategies applied by the sociotechnical system for dealing with
the varying conditions;
Step 4. Improve resilience: to identify means to improve the resi-
lience of the sociotechnical system. Such changes in the opera-
tions may induce a need for another round in the RE cycle.

Prime methods in these steps are workshops with human oper-
ators who are experienced in the operations studied. Such work-
shops contain specific sessions for each of Steps 1–4 (Everdij
et al., 2016).

ABMS contributes to the analysis of adaptive capacity in Step 3
of this RE cycle. As a first sub-step (3a) strategies that are applied
for dealing with varying conditions are identified and discussed in
a workshop with operators. This provides an initial analysis of the
adaptive capacity of the sociotechnical system for dealing with the
identified varying conditions in the context of the operations. In
some cases, such analysis may be sufficient to gain a proper under-
standing of the adaptive capacity, such that this understanding
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suffices for the identification of measures to improve the resilience.
In other cases it may be recognized that the complexity of the
interrelations and dynamics of the sociotechnical system is too
high to attain a sufficient understanding of the adaptive capacity.
In these cases ABMS provides a structured means to obtain a
more profound understanding of the adaptive capacity of the
sociotechnical system. In support of Step 3, we distinguish two
phases in ABMS: (3b) qualitative ABMS and (3c) quantitative
ABMS.

The qualitative ABMS phase is the first phase, which always
precedes the quantitative ABMS phase, but which can also be the
sole result of ABMS in support of Step 3. It consists of the following
steps:

� Development of a qualitative model. The scope of the model
development is determined. This scope may focus on particular
(more complex) parts of the operation in relation with particu-
lar varying conditions. Next the agents and interactions
between the agents are determined. For each of the agents it
is determined what model constructs are needed to describe
the states and behaviour of the agent and details of the model
constructs are provided qualitatively.

� Mental simulation. On the basis of the developed qualitative
model it is reasoned by the model developers what kinds of
sequences of agents’ interactions exist and in what way perfor-
mance variables of the model may develop given particular
varying conditions. Such mental simulation can serve to provide
feedback in the model development process by identifying
weak spots in the developed model. The mental simulation also
can lead to new insights into the coupling and dynamics of the
agents as a basis for recommendations to improve resilience of
the sociotechnical system.

The quantitative ABMS phase builds upon the qualitative ABMS
phase and it consists of the following steps:
� Development of a formal model. The qualitative agent-based
model is further formalized to arrive at a complete mathemat-
ical description of the agent-based model. Parameters in the
model are provided with quantitative values. Such parameter
values may be uncertain and it can be useful to specify uncer-
tainty bounds.

� Software implementation. The formal model is used to develop
computer simulation code of the agent-based model, e.g. using
general programming languages or a specific agent-based mod-
elling tool (Macal and North, 2010). The performance of the
software is verified.

� Computer simulation. The software implementation is used for
computer simulation of the agent-based model and the simula-
tion results are interpreted by the user. The computer simula-
tion results provide detailed insights into the couplings,
dynamics and variability of the agents’ performance. The
insights thus achieved can be the basis for qualitative or quan-
titative recommendations to improve the resilience of the
sociotechnical system.

The focus of this paper is on the methods and results of the (3b)
qualitative ABMS phase and the following two subsections
describe the methods of the development of a qualitative model
and of the mental simulation using this qualitative model.

2.2. Development of a qualitative agent-based model

2.2.1. Introduction
An agent-based model of a sociotechnical system describes the

performance and interactions of its constituent human operators
and technical systems working in an operational context. Agents
in a sociotechnical system contain boundaries separating internal
states and processes from states and processes external to the
agent (in other agents/environment). Relations between an agent’s
internal and external states or processes are represented strictly
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via the inputs and outputs of the agent considered. This makes it
easier to specify models of complex systems that consist of many
interacting entities, thereby facilitating effective study of the emer-
gent behaviour of such systems. The particular ways that an
agent’s states evolve, the implications of an agent’s input, and
the behavioural patterns and output of an agent can be represented
by model constructs. Also events and conditions that make up the
environment of the sociotechnical system can be represented by
model constructs (see Fig. 2).

The development of a qualitative agent-based model of a
sociotechnical system for RE is done along the following steps:

� Scoping of the qualitative agent-based modelling;
� Identification of agents and interactions;
� Identification of model constructs;
� Qualitative description of model details.

These steps are explained next.

2.2.2. Scoping
The scope of the qualitative agent-based modelling refers to the

types of operations, the human operators and technical systems,
the varying conditions, and the geographical boundaries of the
sociotechnical system. Typically, the scope of the qualitative
agent-based modelling is a subset of the scope of the overall RE
study (as described in Step 1 of Fig. 1). In particular, the scope
includes those aspects of the performance of the sociotechnical
system for which the results of the analysis in Step 3a are too
uncertain and for which it is expected that additional analysis by
ABMS can reduce the level of uncertainty.

2.2.3. Identification of agents and interactions
The sociotechnical system in the scope of the study is modelled

by a set of agents. In Macal and North (2010) essential characteris-
tics of an agent are considered to be that an agent is a self-
contained uniquely identifiable individual, that it is autonomous
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Model 
construct

Model 
construct
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Model 
construct

Model 
construct
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Fig. 2. Generic overview of an agent-based model, consisting of human operators and
model constructs that represent aspects of the agents’ behaviour and interactions.
and can function independently, that it has a dynamic state, and
that it has dynamic interactions with other agents that influence
its behaviour. In the modelling of a sociotechnical system the
agents typically are human operators and technical systems. To
restrict the complexity of the overall agent-based model, a group
of human operators or a group of technical systems may be consid-
ered as a single (aggregated) agent, if it can be considered as a sin-
gle entity in its behaviour and interactions with other agents. In
this modelling step, it is decided what the agents of the studied
sociotechnical system are, and which inter-agent interactions
exist. This builds upon the understanding of the operations in
nominal situations achieved in Step 1, as well as on the knowledge
of strategies for dealing with particular varying conditions
achieved in Step 3 of the RE cycle.

2.2.4. Identification of model constructs
A model construct is a generic model describing particular

aspects of the ways that agents behave and evolve in interactions
with other agents and conditions in the environment. Model con-
structs are also used to describe evolutions in the environment of
the agents. Model constructs are high-level archetypes and within
specific applications, modelling details need to be specified at a
later stage (see Section 2.2.5).

For the identification of model constructs it needs to be under-
stood, which key aspects of the entities in the sociotechnical sys-
tem drive their behaviour and contribute to the uncertainty in
the overall performance, for the conditions in the scope of the
ABMS study. Such understanding can be achieved in the initial
analysis of the adaptive capacity of Step 3a and this also forms
the basis for the scoping of the ABMS study.

Next, this knowledge is used to identify the set of model con-
structs that can best represent the key behavioural aspects of the
agents in the model. This identification requires an understanding
of types of agent-based models, their background, and the ways
that they are applied in ABMS. Notwithstanding the systematic
background knowledge that is used, to a certain extent the
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technical systems in an environment. Agents are represented by a combination of



34 S.H. Stroeve, M.H.C. Everdij / Safety Science 93 (2017) 29–49
identification of model constructs is also a creative process, which
builds upon the experience and preferences of the modeller. As
such, there is no unique set of model constructs for a particular
problem. Also, if no suitable model construct exists to represent
a particular aspect of the sociotechnical system, a new model con-
struct can be developed to this end.

As a basis for the identification of model constructs, the ABMS
literature provides a large variety of agent models (Macal and
North, 2010), including for modelling of sociotechnical systems
(Van Dam et al., 2013) and social interactions (Sun, 2006). In sup-
port of RE in air traffic management (ATM), Stroeve et al. (2013b)
developed a library of model constructs for agent-based modelling.
This set contains 38 model constructs, which were identified in the
ABMS literature and which were evaluated for their capability to
support the modelling of a broad range of conditions and events
that may contribute to unsafe situations. These model constructs
include quite generic ones, e.g. describing how situation awareness
may evolve or generic tasks are scheduled and performed, as well
as quite detailed and specific ones, e.g. about confusion, group
emotion, and goal-oriented attention. For studying resilience in
air transport, this library provides a useful starting point for the
identification of model constructs.
2.2.5. Qualitative description of model details
In this step, the details of the model constructs are determined

at a qualitative level for all agents in the use case. The specifically
required model details depend on the model construct considered.
The list below provides an overview of the types of details that may
be specified in this stage.

� State variables, such as the position and speed of an aircraft, or
the situation awareness of an air traffic controller about the
position of an aircraft;

� Mode variables, describing an operating mode of a technical
system (e.g. some normal working mode, or a failure mode),
or of an human operator (e.g. tactical or opportunistic contex-
tual control mode);

� Types of tasks that a human operator may perform;
� Types of behaviour that an agent may show;
� The way that a model construct is influenced by other model
constructs within the same agent (intra-agent input);

� The way that a model construct influences other model con-
structs within the same agent (intra-agent output);

� The way that a model construct is influenced by model con-
structs of other agents (inter-agent input);

� The way that a model construct influences model constructs of
other agents (inter-agent output).

All these aspects are provided qualitatively using textual
descriptions. Quantification of the agent-based model is not done
in this step, but only in Step 3c of the RE cycle (not detailed in this
paper).
2.3. Mental simulation

The developed qualitative agent-based model provides a struc-
tured representation of the sociotechnical system for a particular
operational context. Such structured representation helps to
improve the understanding of the complexity of the relations and
dynamics of the sociotechnical system. The development of the
qualitative model as such is a first way to support this understand-
ing. As a second and more illustrative way, mental simulation
employs reasoning on the basis of the developed qualitative
agent-based model.
We next discuss two types of mental simulation, which focus
on the interactions in the agent-based model and on its dynamics,
and we discuss the use of the mental simulation results in the RE
cycle.

2.3.1. Analysis of interactions
As a first type of mental simulation, the qualitative agent-based

model can be used for structured reasoning about the interactions
between the agents’ models in the contextual conditions of the
operation that are in the scope of the qualitative ABMS phase. Such
analysis can focus on interactions during operations that are con-
sidered to be normal, or on interactions following some varying
condition of interest. It consists of the followings steps.

� As a starting point, an initial condition of agents should be for-
mulated. This initial condition specifies the states and modes of
the agents at the start of the mental simulation.

� One or several triggering events or occurrences of varying con-
ditions are specified, which describe conditions of interest for
studying the adaptive capacity of the sociotechnical system. If
such event/condition occurs at the start of the simulations, it
extends the initial condition, otherwise its timing during the
scenario is specified.

� Next it is argued what the main changes are in the states and
modes of the agents’ models following the initial condition. This
argumentation is structured by listing sequences of triggers and
resulting actions in the agents. Such trigger-action pairs can be
internal to an agent (e.g. an observation leading to a decision to
coordinate) or it can impose an interaction between agents (e.g.
a communication act leading to a change in situation aware-
ness). As such this exercise provides instantiations of sequences
of interactions that may occur in the agent-based model. As the
state space of the overall model can be extensive, this argumen-
tation is done for the states that are judged to be most relevant
for the situation studied. By making such judgments during the
simulations, mental simulations differentiate from computer
simulations, wherein the overall state space is simulated and
wherein only after the simulations the most relevant state tran-
sitions are identified.

� A case of multiple varying conditions leads to multiple instanti-
ations of interaction sequences that need to be accounted for,
e.g. a bad weather condition versus a bad weather condition
in combination with a technical failure.

The ways that the results of such mental simulation can be used
in the RE cycle is discussed in Section 2.3.3 and a detailed illustra-
tion for the air traffic application is presented in Section 5.1.

2.3.2. Analysis of dynamics
As a next type of mental simulation, the qualitative agent-based

model supports structured reasoning about dynamic relations
between states and modes of agents. This can most effectively be
done in follow-up to the analysis of interactions as explained
above, since the types of interactions need to be understood in
order to reason about the dynamic effects. It consists of the follow-
ing steps.

� As a starting point of the analysis it is decided what states or
modes need to be studied in detail to support the understanding
of the adaptive capacity. These may be key states identified in
the analysis of interactions (Section 2.3.1) or other relevant
indicators of the overall system performance. It can be espe-
cially useful to reason about some aggregated values of states,
such as averages of states over ranges of instantiations of the
agent-based model.



S.H. Stroeve, M.H.C. Everdij / Safety Science 93 (2017) 29–49 35
� An initial condition of the agents’ states and modes is specified.
� One or several triggering events or occurrences of varying con-
ditions are specified, which extend the initial condition or occur
at a later stage.

� It is qualitatively argued how the relevant states change in time
due to the interactions in the agent-based model. The results of
this reasoning about the agent states are described in narratives
and can be illustrated by graphs as function of time. These
graphs provide qualitative indications of the variation in the
selected (aggregate) state variables, which are supported by
the argumentation of the elements in the agent-based model
that are expected to give rise to them. It can be useful to com-
pare the qualitative graphs for several cases, e.g. a new versus
an old operation, or an operation in condition 1 versus condition
2. Also in this type of mental simulation, the dynamics of the
complete state space are not described in detail, but rather it
is judged during the mental simulation what the most relevant
state dynamics are.

� In the case of multiple varying conditions, above process needs
to account for the triggers they induce for the state dynamics.

The use of this type of mental simulations in the RE cycle is dis-
cussed next and a detailed illustration for the air traffic application
is presented in Section 5.2.

2.3.3. Use of mental simulation results in the RE cycle
Performing mental simulation requires a good overview and

understanding of the qualitative agent-based model, as well as suf-
ficient knowledge about the application field. In addition, experi-
ence in agent-based computer simulations or multidisciplinary
systems engineering supports meaningful reasoning about the
qualitative agent-based model. These requirements typically imply
that the prime executors of mental simulations are scientists of the
multidisciplinary model design team. Nevertheless, also other
independent researchers with a suitable background should be
able to understand the model and to execute the mental simula-
tions. This would require some additional effort to understand
the overall model, but has the added value of an independent view
and interpretation of the model.

Results of the mental simulations can be discussed with oper-
ational experts, for instance with the experts who contributed to
the identification and discussion of strategies in Step 3a of the RE
cycle. The objective of such discussion in Step 3 of the RE cycle is
to get feedback from the operational experts on their view of the
validity of the mental simulation results. Do they agree with the
presented behaviour and interactions of the agents? Do they
think that particular key aspects or interactions are missing in
the simulation results? Do they understand and agree with the
resulting dynamics? Feedback to these types of questions can
lead to several types of conclusions in the context of the RE
cycle:

� It can support the identification of missing aspects in the agent-
based model, e.g. particular agents, behavioural aspects or agent
interactions. This may require an update of the qualitative
agent-based model and of the mental simulations, followed by
another feedback round of operational experts.

� It can lead to the conclusion that all key elements of the
sociotechnical system are well represented in the agent-based
model, but that the methods of mental simulation are not suffi-
ciently sophisticated to understand the dynamic and stochastic
implications of the agents’ behaviour and interactions with suf-
ficient certainty. Following this conclusion, it can be decided to
further develop the agent-based model towards a formally
specified and quantified model, which is evaluated using com-
puter simulations in Step 3c of the RE cycle.
� It can lead to the conclusion that the mental simulations pro-
vided sufficient insights into the adaptive capacity. The thus
achieved insights can be used in Step 4 of the RE cycle as a basis
to identify measures to improve the resilience of the sociotech-
nical system.

3. Studying the resilience of an air traffic operation

3.1. Air traffic operation

The air traffic application case of this paper considers the
approach of multiple traffic streams towards a single runway. A
schematic overview of the air space organization is shown in
Fig. 3. Aircraft enter via sectors S1 or S2, heading towards way-
points W1 or W2, respectively. The two traffic streams merge at
W3 in the ARR (Arrival) sector. The last part of the approach and
landing on the runway is controlled in the TWR (Tower) sector.
Each sector is under the control of a single air traffic controller,
who is responsible for safe and efficient traffic through the sector.
Prime means for this are radar surveillance systems and radio-
enabled voice communication between pilots and controllers. In
conventional air traffic control, pilots are given instructions to
adhere to particular speeds or to use series of heading directions
(vectoring) such that separation between aircraft is maintained
in the sequence and during merging. There is a joint supervisor
for the controllers working in sectors S1, S2 and ARR, and there
is a supervisor for the TWR sector.

The future operation studied uses an aircraft surveillance appli-
cations system (ASAS) to enable airborne spacing (ASPA) for
sequencing and merging. Pilots can get an instruction by the S1,
S2 or ARR controller to use ASAS to maintain a particular spacing
with respect to a target aircraft in front of them. If the target air-
craft is on the same route, ASAS is used for sequencing only (e.g.
aircraft 3 uses aircraft 2 as a target for sequencing in Fig. 3). If
the target is on the merging route, ASAS is used for merging first
and sequencing next (e.g. aircraft 4 uses aircraft 3 as a target for
merging and sequencing in Fig. 3). Following the controller instruc-
tion the pilots first use ASAS to find out whether the requested air-
borne spacing is acceptable, and if so, they affirm the controller’s
request and initiate the airborne spacing operation. Now ASAS con-
tinuously tracks the spacing with respect to the target aircraft and
it adjusts the aircraft speed (within limits) to attain and maintain
the requested spacing. Although the spacing is maintained by ASAS
under the pilots’ supervision, the controller is still the person
responsible for guarding the separation minima.

3.2. Workshop-based resilience analysis

The operations outlined in the previous section were studied for
conventional and ASAS approach operations at a large European
airport. Resilience of these operations was studied by a
workshop-based analysis following a first cycle of Steps 0–4 as
described in Section 2.1. As such, workshop sessions with air traffic
controllers and airline pilots were used as the prime means to
describe current and future operations, identify varying conditions,
identify strategies to deal with the varying conditions, and to iden-
tify means to improve the resilience of the sociotechnical system
(Everdij et al., 2016). This approach led to qualitative interpreta-
tions of the adaptive capacity by structuring of the workshop dis-
cussions with the operational experts. It was recognized in the
study that the analysis of the adaptive capacity may benefit from
additional more detailed analysis approaches, such as agent-
based modelling and simulation. The development of a qualitative
agent-based model for these operations and results of mental sim-
ulation for these models are presented next in Sections 4 and 5,
respectively.
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Fig. 3. Schematic top view of air traffic routes approaching a runway with a sample of aircraft.
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4. Development of a qualitative agent-based model

This section shows the development of a qualitative agent-
based model along the steps of Section 2.2 for the operation
described in Section 3. Section 4.1 describes the scope of the
agent-based modelling. Section 4.2 provides an overview of the
agents and their interactions. Section 4.3 presents the selection
of the model constructs. Section 4.4 presents the models of the
human agents. Section 4.5 presents the models of the technical
system agents. Section 4.6 presents the models of the environment
of the sociotechnical system.
4.1. Scope

It was decided to include the conventional approach operation
as well as the future ASAS approach operation in the scope of the
agent-based modelling study. This provides the opportunity to
compare results of both cases. With respect to the human opera-
tors, all air traffic controllers, supervisors and airline pilots operat-
ing in the airspace sectors, as discussed in Section 3.1, are included
in the scope. For the technical systems, the air traffic control (ATC)
communication systems, ATC surveillance systems, the communi
cation-navigation-surveillance (CNS) systems of the aircraft, the
ASAS systems of the aircraft, and the aircraft as flying entities
themselves are in the modelling scope. The geographical bound-
aries of the model reflect the aircraft entry in sectors S1 or S2
and the aircraft exit when they pass the runway threshold. The
varying condition in the scope of the modelling is a situation of
sudden and unexpected bad weather at the airport, which deterio-
rates the runway condition and therefore leads to the need to
reduce the runway capacity.

4.2. Agents and interactions

Fig. 4 shows an overview of the identified agents and interac-
tions in the agent-based models of the conventional and ASAS
cases. It represents a sequence of aircraft and the air traffic control
provided by the controllers during the aircraft approaches. Within
each aircraft we distinguish the pilots as an aggregated agent, the
aircraft flight performance (position, speed, heading, etc.), the air-
craft CNS system, and the ASAS system. The controllers use ATC
communication systems and ATC surveillance systems as prime
technical systems. Supervisors in the tower and S1/S2/ARR control
room decide on modes of operations and interact with the con-
trollers. The integrated set of these agents is considered as the
sociotechnical system. It exists in an environment, consisting of
airspace and weather in the current model instantiation.

4.3. Selection of model constructs

As a basis for the identification of model constructs for the air
traffic application case we used a library of 38 agent-based model
constructs that was developed in support of RE in ATM (Stroeve
et al., 2013b). For each of these model constructs we described
its potential role in an agent-based model for the use case and
we assessed whether the model construct is needed. A leading
argument in this assessment was that in this development stage
the overall agent-based model should not be overly complex, but
the main interactions and behavioural aspects of the sociotechnical
system should be represented.

As a result of this assessment, a set of 11 model constructs was
chosen for modelling of the application case. These model con-
structs are introduced is the list below. More details on the way
that they are applied and integrated in the use case are provided
in Sections 4.4–4.6.

� M1: Multi-agent situation awareness. Situation awareness (SA) is
a well-known and much discussed human factors concept for
the perception of elements in the environment, their interpreta-
tion and the projection of the future status (Endsley, 1995). In
agent-based modelling, ascription of mental qualities (e.g.
beliefs, desires) to technical systems is seen as useful for analy-
sis of complex systems (Wooldridge and Jennings, 1995). For
analysis of safety risks in complex sociotechnical systems,
Stroeve et al. (2003) developed the multi-agent SA model con-
struct to describe the development of states of humans and
technical systems with regard to their perception, interpreta-
tion and future projection of their multi-agent environment.
Observation, communication and reasoning processes of the
agents drive such state development.

� M2: Task identification. This describes the ways that the operator
identifies the tasks that need to be performed at a particular
time instance.
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� M3: Task scheduling. This describes which tasks may be per-
formed concurrently, as well as priority among the tasks that
cannot be performed concurrently (Blom et al., 2001).

� M4: Task execution. This describes the performance of a human
operator with regard to the execution of a specific task, includ-
ing task-specific performance characteristics.

� M5: Contextual control mode. This model construct considers
that humans can function in a number of contextual control
modes, such as Strategic, Tactical, Opportunistic and Scrambled
(Hollnagel, 1993). The contextual control mode may depend on
human performance aspects such as the range of tasks to be
done and the situation awareness of the human. It influences
human performance aspects such as the planning horizon and
the accuracy of task performance.

� M6: Task load. This model construct describes the number and
complexity of tasks that need to be performed, as considered
in the task scheduling process. The task load influences the
contextual control mode of the human operator. At a more
detailed level, the task load may also describe the resources
required by tasks at the level of visual, auditory, cognitive and
motor performance.

� M7: Decision making. This model construct describes decision
making by agents on the basis of the situation awareness and
decision rules or processes.

� M8: System mode. This model construct describes the behaviour
of a technical system by different modes. These modes are dis-
crete states for the functioning of technical systems, e.g. failure
conditions and system settings. Mode changes may be deter-
ministic or probabilistic and they may depend on the function-
ing of other agents.

� M9: Dynamic variability. This model construct describes the vari-
ability of states of agents due to dynamic processes, e.g. the
movements of an aircraft according to differential equations
relating states such as position, velocity, acceleration and thrust.
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� M10: Stochastic variability. This model construct describes the
stochastic variability in the performance of human operators
and technical systems, e.g. variability in task duration or system
accuracy. This stochastic variability also includes large devia-
tions from normal or intended practices in human performance,
which may be labelled as ‘errors’ in hindsight (Dekker, 2005).
The level of stochastic variability may be influenced by the
contextual control mode.

� M11: Contextual condition. This model construct describes the
context of the operation, such as weather, route structure,
environmental conditions and airport infrastructure.

4.4. Human agents models

The human agents in the models are S1 Controller, S2 Con-
troller, ARR Controller, TWR Controller, Supervisor S1/S2/ARR,
Supervisor Tower, and Pilots Aircraft. These human agents are all
modelled by the same set of model constructs as shown in Fig. 5;
these are all the model constructs identified in Section 4.3 except
M8 and M11.

Multi-agent situation awareness (M1) is a key modelling con-
struct, which represents the situation awareness of a human agent
with respect to other agents and the environment of the agent. The
situation awareness is updated by task execution (M4), e.g. com-
munication, observation, or by decision making (M7), and vice
versa, task execution and decision making depend on the agent’s
situation awareness. During task execution, input of other agents
or elements in the environment may be obtained and output
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Table 1
Modelled ARR controller tasks and the related model constructs M2, M3 and M4. For each task the following aspects are indicated: whether it can be used in the ASAS and/or
conventional case (yes/no); what the trigger is for task identification; what the task priority is (1 = highest priority); whether a task can be done concurrently (yes/no); what is
done in task execution.

Task Case M2. Task identification M3. Task scheduling M4. Task execution

No Description ASAS Conv Trigger Prior-
ity

Concurrency

A Decide on initiation of ASPA
operation

y n When aircraft has passed a
particular point; regular re-
evaluation until decision reached

11/12 y Update SA about initiation of ASPA operation

B Provide ASPA clearance to
aircraft-i: merge or remain
behind

y n When it was decided in Task A 11/12 n Communicate ASPA clearance to aircraft-i

C Communicate termination of
ASPA operation to multiple
aircraft

y n When told so by supervisor (in
Task D)

6 n Communicate termination of ASPA to a sequence
of aircraft, starting with the aircraft that is
closest to the entry of the ARR sector

D Coordinate with supervisor
about separation and possibly
ASPA end

y y When initiated by supervisor 5 n Update SA about separation standard and
possibly ASPA termination

E Handover from S1 or S2
controller

y y When initiated by S1 or S2
controller

13/14 n Communicate with handed over aircraft-i

F Handover to TWR controller y y When aircraft is 6 NM from
runway

13/14 n Instruct aircraft-i to contact TWR

G Terminate ASPA operation for
single aircraft

y n When aircraft reports problem or
when separation conflict is
detected

3 n Update SA about termination of ASPA for single
aircraft and communicate to aircraft

H Monitor traffic situation and
spacing

y y When aircraft is handed over,
regular tracking of each aircraft

4 y Monitor traffic situation and spacing between
aircraft in the sequence

I Decide on aircraft control in
normal control situation

y y When monitoring (task H) is
done

7 y Update SA about planned control action

J Decide on intervention (heading,
speed and/or altitude) in case of
separation conflict

y y When separation conflict is
detected

1 y Update SA about planned intervention action

K Provide navigation clearance
(route, waypoints) to aircraft-i

y y When it was decided in Task I 8/9/10 n Communicate navigation clearance to aircraft-i

L Provide heading, speed or
altitude instruction to aircraft-i
in normal control situation

y y When it was decided in Task I or
Task J

8/9/10 n Communicate heading/speed/altitude to aircraft-
i in normal situation

M Provide heading (vector), speed
or altitude instruction to aircraft-
i in separation conflict

y y When it was decided in Task I or
Task J

2 n Communicate heading/speed/altitude to aircraft-
i in separation conflict

N Provide vector back to route to
aircraft-i

y y When it was decided in Task I 8/9/10 n Communicate vector back to route to aircraft-i
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done concurrently with other tasks (M3), and what the implication
of task execution is (M4). For all model constructs, Table 2 shows
their main performance aspects (e.g. situation awareness compo-
nents, contextual control modes, task load influences), their
input/output relations within the agent, and their input/output
relations with other agents.

In general, the multi-agent situation awareness model describes
what kinds of aspects of the overall sociotechnical system each
human agent may be aware of, and how this dynamic knowledge
state can be influenced by other agents. Application of the task-
related model constructs is based upon identification of the tasks
done by the humans in the operations considered. In the model
development, 13–14 tasks were identified for the main operators
in the operation (S1, S2 and ARR controllers and pilots), whereas
4–5 tasks were considered sufficient for the supervisors and tower
controller models. As next aspects of the task analysis, it was
argued what the triggers are for identification of each of the tasks,
what the priorities are in the sets of tasks, and what tasks can be
done concurrently with other tasks. Finally, it was argued what
the impact is of task execution. In a multi-agent environment, task
execution often implicates an effect of one agent on another agent,
for instance by communication, observation, or setting of technical
system parameters. These kinds of actions typically imply updating
of situation awareness of agents in the multi-agent environment.
Such updated situation awareness components can be, in their
turn, triggers for task identification by the agent considered, and
they are input for the decision making model construct. By such
situation awareness-based interactions between agents, the
multi-agent situation awareness construct is key for analysis of
information flows in the sociotechnical system and it forms the
link with the task-related performance of the human agents. Next,
aspects such as number, duration, complexity and frequency of
tasks identified by a human agent effectuate the task load. The task
load is considered to be a key input parameter of the contextual
control mode of a human agent and this control mode has effect
on the task scheduling and task execution. Finally, many model
constructs, such as task and decision making related constructs,
include dynamic and stochastic variability, such as variability in
task durations or noise or errors in observations, and these are
explicitly represented in the agent-based model.

4.5. Technical system agents models

4.5.1. ASAS agent
The ASAS agent is part of the ASAS case only. Its model con-

structs are shown in Fig. 6. They represent the situation awareness
(M1) of an ASAS agent about the position, speed and type of the
ownship and of the target aircraft, the control actions performed
by the ASAS system (decision making, M7), and system modes
(M8), such as sending and receiving information to the aircraft
and pilots. Details of the performance and the input-output rela-
tions in the agent-based model are shown in Table 3.



Table 2
Instantiation of model constructs for ARR controller agent: specific aspects, input/output relations within the agent, input/output relations with other agents. Some elements
apply to the ASAS case only.

M1. Multi-agent situation awareness
SA components � General control mode: ASPA on/off ⁄ASAS case only⁄

� List of aircraft under control
� ASPA mode of each controlled aircraft-i: on / off ⁄ASAS case only⁄
� 3D position of each controlled aircraft-i
� Speed of each controlled aircraft-i
� Track of each controlled aircraft-i
� Instruction/clearance to each controlled aircraft-i: remain behind aircraft-j/merge behind aircraft-j/fly a vector/fly a speed/de-
scend to and/or maintain altitude/fly a published procedure

Intra-agent Input � M4 Task execution: executing a task, e.g. a monitoring task, may lead to an update of SA
� M7 Decision making: reaching a decision leads to an update of SA

Output � M2 Task identification: recognition based on SA that a task needs to be done
� M4 Task execution: task execution influenced by SA, e.g. sending a particular message
� M7 Decision making: decision making based on SA

Inter-agent Input � ATC Surveillance Systems: aircraft position/speed/track
� Pilots aircraft-i: ASPA mode ⁄ASAS case only⁄
� Supervisor S1/S2/ARR: general control mode ASPA ⁄ASAS case only⁄

Output No direct effects on other agents, since this is always done via the agent’s task execution

M2. Task identification
Task triggers See Table 1
Intra-agent Input � M1 Multi-agent situation awareness: SA of controller can be a trigger for a task

� M10 Stochastic variability
Output � M3 Task scheduling: notification that a task needs to be done

� M6 Task load: keeping track of the number and types of tasks to be done
Inter-agent Input � Supervisor S1/S2/ARR: incoming message

� Pilots aircraft-i: incoming message
Output No direct effects on other agents

M3. Task scheduling
Scheduling aspects See Table 1
Intra-agent Input � M2 Task identification: a task is scheduled after it has been identified

� M9 Dynamic variability
Output � M4 Task execution: task scheduling determines when a task is executed

Inter-agent Input None
Output No direct effects on other agents

M4. Task execution
Execution effects See Table 1
Intra-agent Input � M1 Multi-agent situation awareness: task execution may depend on the situation awareness of the ARR controller

� M3 Task scheduling: task scheduling determines when a task is executed
� M5 Contextual control mode: the control mode may affect the way that a task is performed
� M7 Decision making: more complicated tasks may need dedicated decision making
� M9 Dynamic variability
� M10 Stochastic variability

Output � M1 Multi-agent situation awareness: situation awareness of controller may be updated following task execution
� M7 Decision making: decisions made may influence the task execution

Inter-agent Input None
Output � Pilots aircraft-i: outgoing messages

M5. Contextual control mode
Control modes � Opportunistic

� Tactical
Mode switches � Switch from tactical to opportunistic if task load is higher than a threshold

� Switch from opportunistic to tactical if task load is lower than a threshold
Intra-agent Input � M6 Task load: the task load influences the control mode

Output � M9 Dynamic variability: the control mode influences task duration
� M10 Stochastic variability: the control mode influences stochastic variability in task execution

Inter-agent Input None
Output None

M6. Task load
Task load influences � Number of tasks to be performed

� Frequency of each task to be performed
� Expected duration of each task to be performed
� Novelty, complexity, difficulty of tasks to be performed

Intra-agent Input � M2 Task identification: the number, durations and types of tasks to be done determine the task load
Output � M5 Contextual control mode: the task load influences the control mode

Inter-agent Input None
Output None

M7. Decision making
Related tasks � Task A: decide on initiating ASPA operation

� Task G: decide on terminating ASPA operation
� Task I: decide on how to move aircraft safely and efficiently
� Task J: decide on intervention (vector, speed, or altitude to be provided) in case of a separation conflict

40 S.H. Stroeve, M.H.C. Everdij / Safety Science 93 (2017) 29–49



Intra-agent Input � M1 Multi-agent situation awareness: decision making is based on the situation awareness
� M4 Task execution: decision making may be called upon during task execution
� M9 Dynamic variability
� M10 Stochastic variability

Output � M1 Multi-agent situation awareness: decision making updates the controller’s situation awareness
� M4 Task execution: task execution is influenced by the decision making

Inter-agent Input None
Output None

M9. Dynamic variability
Examples � Duration of task execution

� Duration of decision making
Intra-agent Input � M5 Contextual control mode: the control mode can influence the speed of task execution, e.g. higher speed in case of oppor-

tunistic control mode
Output � M3 Task scheduling: dynamics of task scheduling

� M4 Task execution: dynamics of task execution
� M7 Decision making: dynamics of decision making

Inter-agent Input None
Output None

M10. Stochastic variability
Examples � Variation in observed spacing during monitoring (Task H)

� Variation in decision on intervention strategy (Task J)
� Controller communicates to merge behind wrong aircraft (Task B) ⁄ASAS case only⁄

Intra-agent Input � M5 Contextual control mode: the control mode influences stochastic variability, e.g. a higher probability of a deviation in task
execution in the opportunistic control mode

Output � M2 Task identification: stochastic variation in task identification
� M4 Task execution: stochastic variation in task execution
� M7 Decision making: stochastic variation in decision making

Inter-agent Input None
Output None
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Fig. 6. Model constructs of an ASAS agent and their interactions.
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4.5.2. Aircraft flight performance agent
The model constructs of an aircraft flight performance agent

(Fig. 7) represent the aircraft movements and related aircraft sys-
tem modes. The dynamic variability construct (M9) represents
variations in aircraft movement states (position, speed, heading)
and these interact with intra-agent system modes. The system
mode construct (M8) represents flight control modes for flying
speed profiles, heading profiles, and/or altitude profiles. It has
intra-agent interactions with the dynamic variability construct
and it has inter-agent interactions with the pilots, ASAS and CNS
agents of the own aircraft.

4.5.3. Aircraft CNS agent
The model constructs of the communication, navigation and

surveillance (CNS) systems of an aircraft (Fig. 8) represent the
agent’s situation awareness, communication and other working
modes of the CNS system, and the dynamic and stochastic variabil-
ity in the performance of the CNS system. Situation awareness
components in M1 include the 3D positions, speeds and headings
of the own and other nearby aircraft, and the identity of these
other aircraft. The multi-agent SA construct interacts with system
modes in the same agents, which influence the SA updating
process, and it interacts with the pilots, ASAS and aircraft flight
performance of the own aircraft, with the CNS and aircraft flight
performance of other nearby aircraft, and with the ATC communi-
cation and surveillance systems. The systemmodes (M8) represent
working modes for aircraft communication, navigation and surveil-
lance systems, including failure modes. They interact with the
multi-agent SA construct of the same agent. The dynamic variabil-
ity construct (M9) signifies the time-dependency in the situation
awareness updating processes and the switching in system modes.
The stochastic variability construct (M10) signifies random aspects
in SA updating (e.g. noise in observations/communications) and in
system mode switching.

4.5.4. ATC surveillance system agent
The model constructs of the ATC surveillance system are also

represented by Fig. 8. In the context of the ATC surveillance, the
multi-agent SA construct (M1) represents the position, speed,
heading and identity of the aircraft, the system modes influence
the updating process, it receives input from with the aircraft flight
performance (primary radar) and CNS system (secondary radar) of
the aircraft, and it provides surveillance data to the controllers and
the supervisors. The system modes (M8) represent modes of the
surveillance system, including failure modes. The dynamic vari-
ability construct (M9) signifies the dynamics of the situation
awareness updating. The stochastic variability construct (M10) sig-
nifies noise in SA updating and random aspects in system mode
switching.

4.5.5. ATC Communication agent
The model constructs of the ATC Communication agent (Fig. 9)

represent system modes of the ATC communication system, such
as the functioning of the voice and datalink communication capa-
bilities, as well as the dynamic and stochastic variability of com-
munication message handling. The interactions are with the
controller agents and the CNS systems of the aircraft.

4.6. Environment models

Elements of the environment of the agents in the sociotechnical
system are represented by the model construct contextual



Table 3
Instantiation of model constructs for ASAS agent: specific aspects, input/output relations within the agent, input/output relations with other agents.

M1. Multi-agent situation awareness
SA components � Control mode: ASPA on/off of own aircraft-i

� 3D position and track of own aircraft-i
� Speed vector of own aircraft-i
� Type of own aircraft-i
� 3D position and track of target aircraft
� Speed of target aircraft
� Type of target aircraft
� ASPA manoeuvre parameters (target aircraft identity, target aircraft intended flight path information, ASPA manoeuvre type,
assigned spacing goal, achieve-by point, planned termination point)

� ASPA execution parameters (interval management speed, predicted spacing interval, measured spacing interval, unable to
continue and failure flags from the ASAS system)

Intra-agent Input � M7 Decision making: reaching a decision leads to an update of the SA
� M8 System mode: reception of messages

Output � M7 Decision making: reaching a decision leads to an update of the SA
� M8 System mode: sending of messages

Inter-agent Input None
Output No direct effects on other agents, as messages are received and sent via system modes.

M7. Decision making
Types of decisions � Deciding/advising whether ASPA operation can be initiated/terminated

� Control algorithm generating interval management speeds to achieve and/or maintain required spacing with target aircraft
Intra-agent Input � M1 Multi-agent situation awareness: decision making is based on the situation awareness

� M8 System mode: reception of messages
Output � M1 Multi-agent situation awareness: decision making updates system’s situation awareness

� M8 System mode: sending of messages
Inter-agent Input None

Output None

M8 System mode
Types of system modes � Send interval management speed to aircraft speed control system

� Receive aircraft data: receive data from own aircraft and target aircraft (via CNS System)
� Receive ASPA manoeuvre parameters from pilot
� Provide ASPA manoeuvre and execution parameters for display to pilot

Intra-agent Input � M1 Multi-agent situation awareness
� M7 Decision making

Output � M1 Multi-agent situation awareness: decision making updates system’s situation awareness
� M8 System mode: sending of messages

Inter-agent Input � CNS of own aircraft-i
� Pilots of own aircraft-i
� Aircraft evolution of own aircraft-i

Output � CNS of own aircraft-i
� Pilots of own aircraft-i
� Aircraft evolution of own aircraft-i

Dynamic 
variability (M9)

System mode 
(M8)

Aircraft flight performance agent

Other
agents

Other agents
& Environment

Fig. 7. Model constructs of an aircraft flight performance agent and their
interactions.
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Fig. 8. Model constructs of Aircraft CNS System agent, as well as of ATC Surveillance
System agent, and their interactions.
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Fig. 9. Model constructs of an ATC communication agent and their interactions.
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condition (M11, Fig. 10). In the current model instantiation, simple
models are used for the airspace and the weather. The airspace
model represents the fixed structure of the airspace, such as the
locations of waypoints and of the runway (see Fig. 3). The weather
model represents the weather condition at the airport by two
modes for good weather and bad weather, and it uses stochastic
switches between these modes.

5. Mental simulation of the agent-based model

The qualitative agent-based model presented in Section 4 is
used for mental simulation according to the approach described
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Fig. 10. Model construct of environment.
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in Section 2.3. The mental simulations have been performed by the
developers of the qualitative agent-based models, who have a vast
experience in ABMS for air traffic applications and related human
factors. The mental simulation is presented for the situation where
the weather at the airport suddenly and unexpectedly changes
from good to bad, in both the conventional and ASAS cases. It is
known from the workshop with controllers and pilots that the
strategy used in such sudden weather deterioration is to reduce
the runway capacity. To achieve the associated increase in spacing
between the aircraft, the controllers use a vectoring strategy,
where they instruct aircraft to deviate from the standard approach
route according to aircraft specific directions (vectors) chosen by
the controller. In order to apply the vectoring strategy, the con-
trollers first need to cancel the airborne spacing (ASPA) operation
in the ASAS case.

The analysis of interactions is presented in Section 5.1, the anal-
ysis of dynamic relations is presented in Section 5.2, and the use of
the mental simulation results in the RE cycle is presented in
Section 5.3.

5.1. Analysis of interactions

The initial condition of the mental simulation considers a
stream of aircraft that are on approach to the runway with aircraft
spacing that is commensurate with good weather. In the conven-
tional case the aircraft spacing is maintained by the controllers
using speed and vectoring instructions, whereas in the ASAS case
the ASPA operation is applied to maintain the aircraft spacing.
These initial conditions are extended with a sudden and consider-
able change in the weather at the airport, which is the varying con-
dition studied. Table 4 shows the nominal interactions between
the agents following these initial conditions for both cases (see also
Fig. 4). In particular, it shows the actions of the agents and the trig-
gers of these actions, which may be either internal or external to
the agent considered. The interactions listed are the nominal
actions following the initial varying condition, meaning that they
do not consider other varying conditions (e.g. system failures) that
may change the interactions.

In short, the following interactions occur in response to a sud-
den weather deterioration at the airport. If the weather suddenly
deteriorates (1), the tower supervisor can decide to change the
runway capacity (2). The tower supervisor coordinates with the
S1/S2/ARR supervisor (3) and informs the tower controller (4).
Upon this, the S1/S2/ARR supervisor may decide to adapt the air-
space capacity and to cancel the ASPA operation (5), and to inform
the S1/S2/ARR controllers about this decision (6).The tower con-
troller updates the situation awareness about the runway capacity
and separation standard (7). The ARR controller (8), the S1 con-
troller (9), and the S2 controller (10) update their situation aware-
ness about the ASPA cancellation and the new separation standard.
Subsequently in the ASAS case only, these controllers use their ATC
communication system to communicate (11, 12, 13, 14) the ASPA
cancellation to multiple aircraft. These messages are received by
the aircraft CNS systems (15) and by the pilots (16). Next, they
adapt the mode of the ASAS system (17, 18) and control their air-
craft speed along an approach in non-ASPA mode (19), upon which
the aircraft flies the updated flight profile (20). It thus follows from
this mental simulation that there is considerable increase in the
number of needed agents’ interactions for the ASAS case in com-
parison with the conventional case.

In follow-up to the initial response to a weather deterioration,
wherein the runway and airspace capacities are reduced and the
ASPA operation is cancelled, the controllers have to assure that
the aircraft separations get in line with the new capacity require-
ments. It implies that they typically have to increase the spacing
between the aircraft in the sequence. Interactions 21–34 in Table 4
show the agents’ interactions for increasing spacing of traffic in the
ARR sector; similar interactions exist for the S1 and S2 sectors.
These interactions refer to aircraft 3D position and speed estima-
tion by the ATC surveillance system, the hereupon based monitor-
ing of aircraft states by the controller, the specification of heading
instructions to increase the spacing, the transfer of the instruc-
tions, the interpretation of the instruction by the pilots and their
control of the aircraft. Next, the controller keeps monitoring the
aircraft position and can provide a vector back to the route if the
spacing has been increased sufficiently. These kinds of interactions
exist for both the ASAS case and the conventional case. The effects
of these interactions strongly depend on the states of the agents.
Qualitative reasoning of the dynamic evolution of such agent states
is presented next in Section 5.2.

5.2. Analysis of dynamics

In addition to the analysis of interactions presented in above
section, mental simulation on the basis of the qualitative agent-
based model can provide qualitative insight into the dynamic rela-
tions between (aggregated) states of the approach operations in
the ASAS and conventional cases. The initial condition for this
mental simulation is equal to that of the analysis of interactions,
being a stream of aircraft approaching in good weather either in
conventional or in ASAS-supported operations. It was argued in
the RE workshop that in this nominal condition the number of air-
craft per timeframe that can be handled (capacity) in the ASAS case
exceeds the capacity in the conventional case. This implies that the
mean separation distance in the approach stream is initially smal-
ler in the ASAS case.

The dynamics of the following aggregated states are considered
in the mental simulations following this initial condition:

� The capacity (number of aircraft that can be handled in a partic-
ular timeframe), shown in Fig. 11;

� The mean separation distance of aircraft in the approach
sequence (at the end of the ARR sector), shown in Fig. 11;

� The mean vectoring distance (the mean of the additional dis-
tance flown in deviation from the standard approach route as
result of vectoring instructions), shown in Fig. 12;

� The mean communication load of the ARR controller (the mean
fraction of time that the ARR controller uses for R/T communi-
cation with pilots), shown in Fig. 12;

� The mean task load of the ARR controller, shown in Fig. 13;
� The probability of the contextual control mode of the ARR con-
troller (tactical or opportunistic modes), shown in Fig. 13;

� The mean separation distance at the runway threshold, shown
in Fig. 14; and

� The frequency of go arounds (per approach), shown in Fig. 14.

The argumentation in support of these plots is provided next.
The capacity reduction and ASPA cancellation (in the ASAS case)

due to the weather deterioration at the airport, shown in Fig. 11, is
the onset of all other changes in the aggregated states, shown in
Figs. 11–14. The capacity is reduced more in the ASAS case than
in the conventional case, since the ASAS case supports a larger



Table 4
Nominal agents’ interactions in conventional and/or ASAS cases for weather deterioration leading to a reduction in runway capacity and ending of ASPA. For each interaction the
trigger and resulting action are listed.

Nr Conv ASAS Agent Trigger Action

1 � � Weather Random event Sudden and considerable weather deterioration at airport
2 � � TWR Supervisor Sudden and considerable weather deterioration at

airport (1)
Update SA: observe and interpret weather deterioration and decide to
reduce runway capacity

3 � � TWR Supervisor Decision to reduce runway capacity (2) Coordinate with S1/S2/ARR Supervisor
4 � � TWR Supervisor Decision to reduce runway capacity (2) Inform TWR Controller
5 � � S1/S2/ARR

Supervisor
Coordination with TWR Supervisor (3) Update SA: decide on ending of ASPA operation (ASAS case only) and on

airspace capacity and separation
6 � � S1/S2/ARR

Supervisor
Decision on ending of ASPA operation and
separation (5)

Inform S1/S2/ARR controllers about ASPA ending (ASAS case only) and
separation standard

7 � � TWR Controller Information of TWR Supervisor (4) Update SA: runway capacity and separation standard
8 � � ARR Controller Information of S1/S2/ARR Supervisor (6) Update SA: ASPA ending (ASAS case only) and separation standard
9 � � S1 Controller Information of S1/S2/ARR Supervisor (6) Update SA: ASPA ending (ASAS case only) and separation standard
10 � � S2 Controller Information of S1/S2/ARR Supervisor (6) Update SA: ASPA ending (ASAS case only) and separation standard
11 � ARR Controller Update SA about ASPA and/or separation

standard (8)
Communicate end of ASPA operation to multiple aircraft

12 � S1 Controller Update SA about ASPA and/or separation
standard (9)

Communicate end of ASPA operation to multiple aircraft

13 � S2 Controller Update SA about ASPA and/or separation
standard (10)

Communicate end of ASPA operation to multiple aircraft

14 � ATC Comm.
System

Communicate end of ASPA operation by ARR/S1/S2
controllers (11, 12, 13)

Transfer communication messages

15 � CNS System
Aircraft-i

End-of-ASPA communication message (14) Transfer communication messages

16 � Pilots-i End-of-ASPA communication message (15) Update SA: ASPA operation is ended
17 � Pilots-i Update SA on end of ASPA (16) Change mode of ASAS to ASPA off
18 � ASAS-i Mode change by pilots (17) Turn ASPA off
19 � Pilots-i Update SA on end of ASPA (16) Control aircraft along approach in non-ASPA mode
20 � � Aircraft-i Control aircraft in non-ASPA mode (19) Fly along controlled trajectory
21 � � ATC Surveillance

System
Internal repeating trigger Update aircraft position and speed data

22 � � ARR Controller Internal repeating trigger Update SA on aircraft in sector using ATC surveillance data
23 � � ARR Controller Update SA on aircraft in sector (22) Decide and communicate heading to aircraft in case of separation

problem
24 � � ATC Comm.

System
Communicate heading to aircraft (23) Transfer communication message

25 � � CNS System
Aircraft-k

Heading message (24) Transfer communication message

26 � � Pilots-i Heading message (25) Update SA on heading requested by controller
27 � � Pilots-i Update SA on heading (26) Implement heading change
28 � � Aircraft-i Implement heading change (27) Fly heading
29 � � ARR Controller Update SA on aircraft in sector, following heading

change (21, 23)
Provide heading back to route if separation problem is resolved

30 � � ATC Comm.
System

Communicate heading to aircraft (29) Transfer communication message

31 � � CNS System
Aircraft-i

Heading message (30) Transfer communication message

32 � � Pilots-i Heading message (31) Update SA on heading requested by controller
33 � � Pilots-i Update SA on heading (32) Implement heading back to route
34 � � Aircraft-i Implement heading change (33) Fly heading back to route
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capacity in undisturbed circumstances. As a result of the controller
strategies, the mean separation between the aircraft is expected to
gradually increase following the reduction of the capacity (Fig. 11).
The largest increase in the mean separation distance is achieved in
the ASAS case, following the largest decrease in capacity.

Before the capacity reduction, the mean communication load of
the ARR controller is expected to be less in the ASAS case than in
the conventional case, since then the separation control is regu-
lated by the ASPA system. Following the capacity reduction, a
strong increase in the mean communication load (Fig. 12) is
expected in the ASAS case, since firstly the end of the ASPA opera-
tion needs to be communicated to the aircraft and secondly there
needs to be a considerable number of vectoring operations to
increase the separation distances. In the conventional case, the
increase in communication is expected to be more modest, since
no ASPA operation needs to be ended and the mean separation
needs to be increased to a smaller extent. When the separations
in the sequence have been stabilized in correspondence with
new runway capacity, the communication load is decreased to a
new value that is commensurate with the vectoring operations.
The mean vectoring distance in Fig. 12 shows a considerable
increase in the ASAS case, since a large change in separation dis-
tance needs to be achieved, whereas a more modest bump is
expected in the conventional case.

Fig. 13 shows the mental simulation results for the task load
and the control mode of the ARR controller. In line with the large
increase in R/T communication as explained for Fig. 12, the task
load of the ARR controller is expected to increase considerably in
the ASAS case, and to a larger extent than in the conventional case.
In relation with this change in task load, the contextual control
mode of the ARR controller is expected to mostly switch from tac-
tical to opportunistic as a result of the capacity reduction, and this
switch to the opportunistic control mode is more dominant in the
ASAS case. Working in the opportunistic control mode implies in
the model, that the ARR controller is performing tasks (monitoring,
decision making, communication) more quickly. Although thus
more tasks are performed in the opportunistic mode, the stochastic
variability in the task performance has been modelled to increase
in the opportunistic mode, leading to a larger likelihood of tasks
not being performed as they should or as intended.
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Fig. 11. Mental simulation results for the ASAS and conventional cases, for a situation of weather deterioration at the airport. Top row shows the decrease in capacity. Bottom
row shows the mean separation distance of aircraft in the approach sequence.
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Fig. 12. Mental simulation results for the ASAS (left) and conventional (right) cases, for a situation of weather deterioration at the airport. Top row shows the mean vectoring
distance. Bottom row shows the mean communication load of the ARR controller.
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Fig. 14 shows the mental simulation results for the mean sepa-
ration at the runway threshold and the frequency of go arounds
instructed by the TWR controller. It is expected that the frequency
of go arounds increases, since the required increase in separation is
not always achieved. Moreover, the frequency of go arounds is
expected to be higher in the ASAS case, since in this case the capac-
ity reduction is larger and the S1, S2 and ARR controllers have a
dual job of both ending the ASPA operation and increasing the
separation.

5.3. Use of mental simulation results in the RE cycle

The mental simulation results for the interactions and dynamic
relations presented in above sections were derived on the basis of
the qualitative agent-based model and supported by knowledge of
the strategies used for the deteriorated weather condition achieved
in a workshop with controllers and pilots. The types of interactions
in the agent-based model, and the mental simulation results for
the increase in vectoring, task load and go arounds following the
runway capacity decline are in line with the strategies and expec-
tations expressed during the workshop. However, the interactions
and details of the dynamic relations were not discussed with pilots
and controllers during a follow-up workshop, nor were other types
of validation exercises done for these results.

Given the uncertainty in the current results of the mental sim-
ulations, they can best be formulated as hypotheses, as a basis for
further research. The following hypotheses regarding the adaptive
capacity of the sociotechnical system of the approach operations in
dealing with the sudden weather deterioration have been
identified.
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Fig. 13. Mental simulation results for the ASAS (left) and conventional (right) cases for the situation of strong weather deterioration at the airport. Top row shows the mean
task load of the ARR controller. Bottom row shows probability of attaining tactical/opportunistic control modes by the ARR controller.
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Fig. 14. Mental simulation results for the ASAS (left) and conventional (right) cases for the situation of strong weather deterioration at the airport. Top row shows the mean
separation distance at the runway threshold. Bottom row shows the frequency of go arounds as instructed by the TWR controller.
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� The varying condition is expected to imply a considerable
increase in the task load of the ARR, S1 and S2 controllers in
the ASAS case, since they need to communicate the end of the
ASPA operation to the aircraft in their sectors, as well as to
decide on and communicate vectors to their aircraft so as to
assure the increased separation standard.

� Such increased task load has impact on the way of working of
the ARR, S1 and S2 controller. In reference to the contextual
control mode model of Hollnagel (1993) this may lead to a lar-
ger probability of working in an opportunistic control mode and
to more deviations in task performance. Such deviations have to
be recognized and dealt with somehow by the sociotechnical
system, thus stretching the adaptive capacity.

� It is expected that the varying condition leads to an increase in
the frequency of go arounds, especially in the ASAS case. The
aircraft being sent around have to be added to the approach
sequence once again, thus putting further demand on the adap-
tive capacity.
As part of the RE cycle of Fig. 1, above hypotheses may be
studied by using the approaches introduced in Section 2.3.3. A
key approach for a more profound analysis is the further devel-
opment, parameter quantification, and computer simulation of a
quantitative agent-based model. This will allow a deeper under-
standing of the relations and the timing implications on the per-
formance of the sociotechnical system. It will allow getting
quantitative results for the graphs such as in Figs. 11–14, and
more. Such quantitative agent-based modelling and simulation
may also be used to determine an appropriate maximum capac-
ity of ASPA operations, such that the sociotechnical system can
effectively attain lower capacities in the case of sudden weather
changes. The attained capacity value may be validated by
human-in-the-loop simulations for the varying condition
considered.

If the identified hypotheses would be verified in additional
research, they could be used to identify recommendations to
improve the design of the ASAS operation for dealing resiliently
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with the bad weather situation. If so, such design recommenda-
tions could include:

� Find ways to reduce the task load of ARR, S1 and S2 controllers
in the situation that the ASPA operation needs to be cancelled
and the capacity needs to be reduced. For instance, by adding
a temporary assistant, or by developing a tool for quickly com-
municating end of ASPA operation to aircraft.

� Use a maximum capacity in ASPA operations which can be
effectively downsized in the case of sudden runway capacity
reduction.

� Assure that aircraft going around can be effectively integrated
in the approach stream.

6. Discussion

Following a discussion of some recent reviews we identified the
need in RE for more structured modelling approaches for analysis
of resilience in sociotechnical systems that can support both qual-
itative and quantitative studies. In this paper we presented ABMS
as an approach towards this need. Although in general ABMS is
considered to be a quantitative approach, in this paper we showed
that development of an agent-based model starts with a qualitative
development step and that mental simulation can be used to
obtain qualitative results. Such qualitative analysis was illustrated
in detail for aircraft approach operations using conventional sys-
tems and ASAS.

An agent-based model of a sociotechnical system represents a
collection of human agents and technical system agents which
interact among each other and with the environment in which they
reside. The agents have time-dependent states, inputs and outputs,
and the evolution of these states, the impact of the input signals on
the states, and the implications of the states for the output signals
are represented by sets of model constructs. In the application
case, eleven model constructs were used, which were chosen from
a library of model constructs that was developed for ATM
sociotechnical systems. For the human agents these model con-
structs included multi-agent situation awareness, as a key con-
struct for the agent’s situation awareness in a multi-agent
environment, several task-related (identification, scheduling, exe-
cution, decision making) model constructs, task load and contex-
tual control mode as workload-related model constructs, and
variability-related model constructs representing dynamics,
stochasticity and errors in human performance. For the technical
system agents smaller sets of model constructs were used, includ-
ing multi-agent situation awareness, decision making, system
mode, and dynamic and stochastic variability. Overall, the detailed
qualitative description along these agent-based model constructs
provides a well-defined and structured overview of the informa-
tion flows, task work done, workload, and dynamic and stochastic
performance variability of the humans, as well as of the informa-
tion flows and performance of the technical systems in the opera-
tion studied. As such, the achieved agent-based model is an
analysis result in itself, which structures the understanding of
the task performance, interactions, and the inherent variability of
the operations.

The developed agent-based model was used for structured
qualitative reasoning about the dynamic interactions between
the agents and their effects on agents’ variables. This kind of rea-
soning is termed ‘mental simulation’ as it is completely based on
specialist model-based reasoning, without using computer imple-
mentation and simulation of the agent-based model. Using such
mental simulation for the modelled conventional and ASAS opera-
tions, we identified several differences between the operations for
dealing with varying conditions. These differences refer to the
number and kinds of interactions between the human and
technical system agents, and to the dynamic evolution of perfor-
mance variables, such as the mean separation, the vectoring dis-
tance, the task load, the contextual control mode, and the
number of go arounds during final approach. As thus illustrated,
mental simulation can provide insight into the sociotechnical sys-
tem performance and provide feedback for design and additional
analysis.

The development of a qualitative agent-based model and the
mental simulation using this model are part of an RE approach
for analysis and improvement of the resilience of a sociotechnical
system. Main methods in this RE cycle are workshops with human
operators who are proficient in the operations studied. Workshops
are common in RE approaches and they can effectively provide a
broad range of strategies used by operators in all kinds of contex-
tual conditions. The analysis towards a proper understanding of
how the combined strategies and behaviours of interacting human
operators and technical systems have impact on the adaptive
capacity of a sociotechnical system for dealing with ranges of vary-
ing conditions is however far more difficult. As such, for more com-
plex operations, analysis results tend to be high level only, or very
uncertain with respect to performance indicators, or results cannot
be obtained at all by workshop centred RE approaches. The quali-
tative ABMS approach is a first step towards a more structured
analysis, which is supported both by the development of a qualita-
tive agent-based model and by mental simulation. It was illus-
trated in detail in this paper how insights can thus be obtained
for air traffic operations in varying conditions.

In the application case we focused on a particular sudden bad
weather condition that influences aircraft approach operations,
we used qualitative agent-based modelling to arrive at the hypoth-
esis that operations in the ASAS case for this condition are less resi-
lient than in the conventional case, and next we presented some
options to improve the resilience of the operation in the ASAS case
for the sudden bad weather condition. These steps were all part of
an RE cycle that provides feedback to design in order to improve
resilience. Although we argued that the resilience for dealing with
the sudden bad weather condition is less in the ASAS case, this
does not imply that overall the resilience of the ASAS operations
would necessarily be less. We did not study the overall level of
resilience and we recognize that considerably more research
would be needed to arrive at conclusions on this. Questions within
such research would include the following: What is the overall set
of varying conditions for studying the resilience of the operation?
How often do these varying conditions occur? What is the impact
of the strategies for dealing with these varying conditions on per-
formance indicators of interest? How can these various impacts on
performance indicators be combined for all varying conditions to
come at statements on the overall resilience of the sociotechnical
system?

The understanding that the overall performance of a complex
sociotechnical system can be highly variable is one of the founda-
tions of the RE field. This overall performance variability is due to
the intrinsic stochastic dynamics of the elements of a sociotechni-
cal system and its environment, and due to all their interactions.
The overall performance can be regarded as emergent, as it cannot
be understood by its single elements, but only by considering the
totality of all elements and interactions. The description of its ele-
ments and interactions in the qualitative agent-based model sup-
ports analysts to reason in a structured way about the overall
performance of the sociotechnical system. It is clear, nevertheless,
that such mental simulation is only a first step towards under-
standing the overall performance. A principal limitation of mental
simulation is that it is less feasible for models with more complex
interactions to keep track of all possible implications of stochastic
variations, dynamics and interactions of the agents that may follow
a particular initial condition. Mental simulation results are
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therefore bound to mainly describe selected aggregated variables
at a high level for more usual modes of working and interactions,
and to neglect details in variations and less usual performance
aspects. If it can be argued in cooperation with stakeholders, that
the level of the uncertainty in the mental simulation results is
commensurate with the objectives of the RE cycle and no quantita-
tive results are needed, then the mental simulation results can be
accepted as a final result of Step 3 of the RE cycle and used as a
basis to identify improvements in resilience. If such uncertainty
is not acceptable or quantitative results are needed, then the next
step towards development, implementation and computer simula-
tion of a quantitative agent-based model should be pursued. Com-
puter simulations can overcome the limitations of mental
simulation by evaluating in detail all stochastic variations, dynam-
ics and interactions in the agent-based model. Another advantage
of computer simulations is that they can be completely tractable,
in contrast with the reasoning of an analyst during mental simula-
tions or the reasoning of operational experts during a workshop.

Quantitative ABMS steps have not been addressed in detail in
this paper, as our objectives are to present the principles of ABMS
as a way to support RE and to show how ABMS can provide qual-
itative results. The follow-up steps for quantitative ABMS can in
general be pursued using various methods and tools, such as pre-
sented in overviews of Macal and North (2010) and Van Dam
et al. (2013). A specific way how quantitative ABMS for RE may
be achieved is by using methods from agent-based dynamic risk
modelling (DRM) (Blom et al., 2006; Everdij et al., 2014). Agent-
based DRM has used model constructs similar to those shown in
this paper, model formalization by dynamically coloured Petri nets,
and Monte Carlo simulations for estimating accident probabilities
of air traffic scenarios. A key difference is that agent-based DRM
requires rare event estimation techniques to assess the very low
accident probabilities of air traffic scenarios, whereas ABMS for
RE focuses on understanding effects of strategies and adaptive
capacity for the performance of the sociotechnical system in the
context of varying conditions. To arrive at the low accident proba-
bilities in agent-based DRM, specialist knowledge on rare event
estimation and typically long computation times are needed. ABMS
for RE does not need the many replications in Monte Carlo simula-
tions, since it is not focused on estimation of very rare events. As
such, the scenarios and aspects of the sociotechnical system con-
sidered in ABMS for RE may be more extensive and represented
in more detail. In the light of the emphasis on everyday actions
and outcomes in Safety-II (Hollnagel, 2014), this means that these
may be modelled and understood in more detail using ABMS for
RE. Thus achieved insight into the most important aspects of the
sociotechnical may next be used in more dedicated models as part
of agent-based DRM for assessment of accident probabilities. Such
connection between ABMS for RE and agent-based DRM needs to
be studied in follow-up research.

A key question for using results of ABMS in the RE cycle is: what
is their validity? In other words, how well do the models and sim-
ulation results represent reality, within the specific context for
which the model was developed? We like to discuss validity using
the concept of uncertainty, i.e. the extent by which something is
not certain. We already discussed one source of uncertainty, which
is especially relevant for the qualitative ABMS phase, being the
uncertainty due to limitations of the mental simulation process.
Another main source of uncertainty is lack of complete knowledge
of elements and their interactions in the sociotechnical system
and/or limitation of the ways that they are represented in the
agent-based model. In the qualitative ABMS phase this concerns
the high-level specification via model constructs and their inter-
connections. In the quantitative ABMS phase this would concern
the structure of the formal models and the quantification of their
parameters. It is clear that the level of uncertainty in models of
sociotechnical systems can be large, as many of their aspects are
often not known precisely. In the RE domain, conceptual models
are frequently used, which by their nature are generic and there-
fore uncertain for a particular sociotechnical system. A qualitative
agent-based model, such as illustrated in this paper, provides more
detail for the interacting agents and their constituent models and
thereby may describe the performance of the sociotechnical sys-
tem with more certainty. Nevertheless, it is clear that a qualitative
model primarily describes types of mechanisms and interactions,
and that the level of uncertainty in the achieved mental simulation
results may well be significant. The most accurate results may be
achieved by a quantitative agent-based model in combination with
computer simulation. Whether results with low uncertainty can
actually be realized in the quantitative ABMS phase depends on
the validity of the individual agents’ models, the validity of the
integrated set of all models for the operational context, and the
appropriateness of the parameter values. There are various ways
to evaluate the level of uncertainty in these components and in
the overall results, including comparison with results in the litera-
ture, comparison with available measurement data of related
experiments or real operations, and discussion with operational
experts in the RE cycle. Quantitative ABMS can also effectively sup-
port analysis of the sensitivity of performance indicators for
parameter variations, as a way to gain an understanding of the rel-
ative importance of model parts for performance indicators of
interest. The ways that quantitative ABMS can most effectively
be applied in RE needs to be studied in detail in follow-up research.

How do ABMS and mental simulation compare with FRAM
(Hollnagel, 2012)? Some high-level observations are provided next,
but we recognize that a more detailed comparison would be
needed to arrive at more definitive conclusions. The functional
analysis-based approach of FRAM is structured by a single model
construct, which describes input, output, time, control, precondi-
tions and resources for each function or activity in a sociotechnical
system. An advantage of this single model construct is that it can
be easily explained to a wide audience, but main limitations are
(1) it is very abstract, such that it may be difficult to represent
nuances of a sociotechnical system, and (2) the function-based
focus does not explicitly account for the boundaries between enti-
ties (humans, technical systems) in the sociotechnical systems, nor
for their dynamic states. This can be contrasted with the library of
model constructs in ABMS, which enables more nuanced and
detailed modelling, and its agent perspective, which explicitly
accounts for the boundaries between entities and which is state-
based. FRAM employs mental simulation as its principal evaluation
means. This model-based reasoning is primarily focused on argu-
ing about interactions between functions rather than on the
dynamics of sociotechnical systems.

A fundamental question is to what extent detailed and possibly
quantitative models can be used to study and improve resilience.
Woods (2015) stresses that key for resilience is the ability of a sys-
tem to deal with surprise events. Woods uses concepts as graceful
extensibility and sustained adaptability to discuss the capacity of a
sociotechnical system to deal effectively with surprises. Two types
of surprise events can be distinguished: (1) surprises for the agents
but known to the modeller, and (2) surprises unknown to the mod-
eller. Type 1 surprises can be included in an agent-based model,
where agents possess particular sets of strategies for a range of
varying conditions that are known by the agent, but which exclude
the type 1 surprises. Next it can be analysed what the effect is of
the agent-based model for the surprise event, such as the rebound
of robustness with respect to the event. In this way insight is
gained into the capacity of the modelled sociotechnical system to
deal with a particular type 1 surprise and this knowledge can be
used to improve the resilience of the actual system. Type 2 sur-
prises pose a difficulty for modelling, as these are not a priori
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known and thus cannot be modelled. What can be done for type 2
surprises, however, is to evaluate the capability of the agent-based
model for dealing with large sets of different type 1 surprises in
combination with other varying conditions, and to use this knowl-
edge to improve the sociotechnical system. As long as there is
some similarity of type 2 surprises with the studied set, this may
help to attain a more resilient system also for these surprises. It
can be recognized that in these analyses for type 1 and type 2 sur-
prises, system responses such as considered in the rebound and
robustness concepts are used as bridges towards attaining resili-
ence in the graceful extensibility and sustained adaptability con-
cepts of Woods (2015).

In conclusion, ABMS is a detailed analysis approach for studying
resilience of sociotechnical systems that offers a flexible range of
model constructs enabling representation of the work-as-done in
the system. The agent-based perspective fits well with usual views
on elements of a sociotechnical system and it naturally couples
states and behaviour of the agents. Simulation in ABMS can be
done mentally, leading to qualitative results as shown in this
paper, or it can be pursued by computer simulation. The capability
to evaluate many interacting varying conditions by computer sim-
ulations sets open the door to truly studying performance variabil-
ity in normal situations, as envisioned in Safety-II, rather than
focusing on some restricted non-nominal cases, as typically
addressed in Safety-I. This will be further pursued in follow-up
research.
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